Assessment of obstructive sleep apnea-related sleep fragmentation utilizing deep learning-based sleep staging from photoplethysmography.
Journal:
Sleep
PMID:
34089616
Abstract
STUDY OBJECTIVES: To assess the relationship between obstructive sleep apnea (OSA) severity and sleep fragmentation, accurate differentiation between sleep and wakefulness is needed. Sleep staging is usually performed manually using electroencephalography (EEG). This is time-consuming due to complexity of EEG setup and the amount of work in manual scoring. In this study, we aimed to develop an automated deep learning-based solution to assess OSA-related sleep fragmentation based on photoplethysmography (PPG) signal.