AIMC Topic: Photoplethysmography

Clear Filters Showing 1 to 10 of 180 articles

Dual smart sensor data-based deep learning network for premature infant hypoglycemia detection.

Scientific reports
In general, deficient birth weight neonates suffer from hypoglycemia, and this can be quite disadvantageous. Like oxygen, glucose is a building block of life and constitutes the significant share of energy produced by the fetus and the neonate during...

Channel attention pyramid network for remote physiological measurement.

Scientific reports
Remote photoplethysmography (rPPG) is an emerging contactless physiological parameter detection method utilizing cameras, showing great promise as a forefront technology for remote health assessment. While traditional rPPG methods have substantially ...

Cuff-less blood pressure monitoring via PPG signals using a hybrid CNN-BiLSTM deep learning model with attention mechanism.

Scientific reports
Blood pressure (BP) serves as a fundamental indicator of cardiovascular health, measuring the force exerted by circulating blood against arterial walls during each heartbeat. This paper introduces an advanced deep learning framework for precise, non-...

Machine-learning guided differentiation between photoplethysmography waveforms of supraventricular and ventricular origin.

Computer methods and programs in biomedicine
BACKGROUND: It is unclear, whether photoplethysmography (PPG) waveforms from wearable devices can differentiate between supraventricular and ventricular arrhythmias. We assessed, whether a neural network-based classifier can distinguish the origin of...

Diabetes: Non-Invasive Blood Glucose Monitoring Using Federated Learning with Biosensor Signals.

Biosensors
Diabetes is a growing global health concern, affecting millions and leading to severe complications if not properly managed. The primary challenge in diabetes management is maintaining blood glucose levels (BGLs) within a safe range to prevent compli...

Parallel convolutional neural networks for non-invasive cardiac hemodynamic estimation: integrating uncalibrated PPG signals with nonlinear feature analysis.

Physiological measurement
Understanding cardiac hemodynamic status (CHS) is essential for accurate cardiovascular health assessment, as it is governed by key parameters such as cardiac output (CO), systemic vascular resistance (SVR), and arterial compliance (AC). This study a...

Machine Learning-Based VO Estimation Using a Wearable Multiwavelength Photoplethysmography Device.

Biosensors
The rate of oxygen consumption, which is measured as the volume of oxygen consumed per mass per minute (VO) mL/kg/min, is a critical metric for evaluating cardiovascular health, metabolic status, and respiratory function. Specifically, VO is a powerf...

Machine learning analysis of integrated ABP and PPG signals towards early detection of coronary artery disease.

Scientific reports
Every year, Coronary Artery Disease (CAD) claims lives of over a million people. CAD occurs when the coronary arteries, responsible for supplying oxygenated blood to the heart, get occluded due to plaque deposits on their inner walls. The most critic...

MLFusion: Multilevel Data Fusion using CNNs for atrial fibrillation detection.

Computers in biology and medicine
Data fusion, involving the simultaneous integration of signals from multiple sensors, is an emerging field that facilitates more accurate inferences in instrumentation applications. This paper presents a novel fusion methodology for multi-sensor mult...

Enhancing atrial fibrillation detection in PPG analysis with sparse labels through contrastive learning.

Computer methods and programs in biomedicine
BACKGROUND: With the advancements in wearable technology, photoplethysmography (PPG) has emerged as a promising technique for detecting atrial fibrillation (AF) due to its ability to capture cardiovascular information. However, current deep learning-...