Reinforcement learning-based optimization of locomotion controller using multiple coupled CPG oscillators for elongated undulating fin propulsion.

Journal: Mathematical biosciences and engineering : MBE
PMID:

Abstract

This article proposes a locomotion controller inspired by black Knifefish for undulating elongated fin robot. The proposed controller is built by a modified CPG network using sixteen coupled Hopf oscillators with the feedback of the angle of each fin-ray. The convergence rate of the modified CPG network is optimized by a reinforcement learning algorithm. By employing the proposed controller, the undulating elongated fin robot can realize swimming pattern transformations naturally. Additionally, the proposed controller enables the configuration of the swimming pattern parameters known as the amplitude envelope, the oscillatory frequency to perform various swimming patterns. The implementation processing of the reinforcement learning-based optimization is discussed. The simulation and experimental results show the capability and effectiveness of the proposed controller through the performance of several swimming patterns in the varying oscillatory frequency and the amplitude envelope of each fin-ray.

Authors

  • Van Dong Nguyen
    Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.
  • Dinh Quoc Vo
    National Key Laboratory of Digital Control and System Engineering (DCSELab), HCMUT, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.
  • Van Tu Duong
    Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.
  • Huy Hung Nguyen
    National Key Laboratory of Digital Control and System Engineering (DCSELab), HCMUT, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.
  • Tan Tien Nguyen
    Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.