Impact of microwave-assisted extraction on roasted coffee carbohydrates, caffeine, chlorogenic acids and coloured compounds.
Journal:
Food research international (Ottawa, Ont.)
PMID:
32036915
Abstract
Microwave-assisted extraction (MAE) allows to quickly achieve soluble compounds from solid matrices due to the promotion of temperatures higher than the solvent (atmospheric) boiling point, once a closed-vessel system is used for operating at high pressure. In this study, the feasibility of MAE for producing high yield coffee extracts with properties that allow their commercial application was tested through a quality by design approach. It was studied the influence of time of extraction (1, 5.5, 10 min), temperature (120, 150, 180 °C) and the mass-to-volume (m/V) ratio (2, 4, 6 g/60 mL) in the overall extraction yield (24-47%, w/w), carbohydrates content (18-43%, w/w), sugars composition, caffeine (4-7%, w/w), 5-caffeoylquinic acid (1-2%, w/w), colour and antioxidant activity of the extracts. FTIR analysis was used to study the resemblance of coffee extracts and commercial instant coffee. MAE allowed overall extraction yields considerably higher than the home brewing methods, mainly when performed at 180 °C, with a substantial increase in arabinogalactans (AG) extraction associated to higher temperatures. Temperature exerted a crucial role in coffee extracts differentiation, although time and m/V ratio also lead to different values in the responses. Under a circular economy concept, MAE was able to produce extracts that can be used as defined food/brew ingredients and provides a galactomannan and cellulose rich residue that can also be valued as a source of dietary fibre.