Detection of Pancreatic Cancer in CT Scan Images Using PSO SVM and Image Processing.

Journal: BioMed research international
Published Date:

Abstract

A diagnosis of pancreatic cancer is one of the worst cancers that may be received anywhere in the world; the five-year survival rate is very less. The majority of cases of this condition may be traced back to pancreatic cancer. Due to medical image scans, a significant number of cancer patients are able to identify abnormalities at an earlier stage. The expensive cost of the necessary gear and infrastructure makes it difficult to disseminate the technology, putting it out of the reach of a lot of people. This article presents detection of pancreatic cancer in CT scan images using machine PSO SVM and image processing. The Gaussian elimination filter is utilized during the image preprocessing stage of the removal of noise from images. The means algorithm uses a partitioning technique to separate the image into its component parts. The process of identifying objects in an image and determining the regions of interest is aided by image segmentation. The PCA method is used to extract important information from digital photographs. PSO SVM, naive Bayes, and AdaBoost are the algorithms that are used to perform the classification. Accuracy, sensitivity, and specificity of the PSO SVM algorithm are better.

Authors

  • Arshiya S Ansari
    Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
  • Abu Sarwar Zamani
    Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
  • Mohammad Sajid Mohammadi
    Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia.
  • Meenakshi
    GD Goenka University Sohna Haryana, India.
  • Mahyudin Ritonga
    Universitas Muhammadiyah Sumatera Barat, Indonesia.
  • Syed Sohail Ahmed
    Department of Computer Engineering, Qassim University, Buraydah, Saudi Arabia.
  • Devabalan Pounraj
    BVC Engineering College (Autonomous), Odalarevu, Allavaram Mandal, East-GodhavariDistrict, Andhra Pradesh, India.
  • Karthikeyan Kaliyaperumal
    IT @ IoT-HH Campus, Ambo University, Ethiopia.