Prediction of blood pressure changes associated with abdominal pressure changes during robotic laparoscopic low abdominal surgery using deep learning.
Journal:
PloS one
PMID:
35666742
Abstract
BACKGROUND: Intraoperative hypertension and blood pressure (BP) fluctuation are known to be associated with negative patient outcomes. During robotic lower abdominal surgery, the patient's abdominal cavity is filled with CO2, and the patient's head is steeply positioned toward the floor (Trendelenburg position). Pneumoperitoneum and the Trendelenburg position together with physiological alterations during anesthesia, interfere with predicting BP changes. Recently, deep learning using recurrent neural networks (RNN) was shown to be effective in predicting intraoperative BP. A model for predicting BP rise was designed using RNN under special scenarios during robotic laparoscopic surgery and its accuracy was tested.