Interpretable deep learning approach for oral cancer classification using guided attention inference network.
Journal:
Journal of biomedical optics
Published Date:
Jan 1, 2022
Abstract
SIGNIFICANCE: Convolutional neural networks (CNNs) show the potential for automated classification of different cancer lesions. However, their lack of interpretability and explainability makes CNNs less than understandable. Furthermore, CNNs may incorrectly concentrate on other areas surrounding the salient object, rather than the network's attention focusing directly on the object to be recognized, as the network has no incentive to focus solely on the correct subjects to be detected. This inhibits the reliability of CNNs, especially for biomedical applications.