An automated process for supporting decisions in clustering-based data analysis.
Journal:
Computer methods and programs in biomedicine
Published Date:
Mar 24, 2022
Abstract
BACKGROUND AND OBJECTIVE: Metrics are commonly used by biomedical researchers and practitioners to measure and evaluate properties of individuals, instruments, models, methods, or datasets. Due to the lack of a standardized validation procedure for a metric, it is assumed that if a metric is appropriate for analyzing a dataset in a certain domain, then it will be appropriate for other datasets in the same domain. However, such generalizability cannot be taken for granted, since the behavior of a metric can vary in different scenarios. The study of such behavior of a metric is the objective of this paper, since it would allow for assessing its reliability before drawing any conclusion about biomedical datasets.