Deep-learning two-photon fiberscopy for video-rate brain imaging in freely-behaving mice.

Journal: Nature communications
Published Date:

Abstract

Scanning two-photon (2P) fiberscopes (also termed endomicroscopes) have the potential to transform our understanding of how discrete neural activity patterns result in distinct behaviors, as they are capable of high resolution, sub cellular imaging yet small and light enough to allow free movement of mice. However, their acquisition speed is currently suboptimal, due to opto-mechanical size and weight constraints. Here we demonstrate significant advances in 2P fiberscopy that allow high resolution imaging at high speeds (26 fps) in freely-behaving mice. A high-speed scanner and a down-sampling scheme are developed to boost imaging speed, and a deep learning (DL) algorithm is introduced to recover image quality. For the DL algorithm, a two-stage learning transfer strategy is established to generate proper training datasets for enhancing the quality of in vivo images. Implementation enables video-rate imaging at ~26 fps, representing 10-fold improvement in imaging speed over the previous 2P fiberscopy technology while maintaining a high signal-to-noise ratio and imaging resolution. This DL-assisted 2P fiberscope is capable of imaging the arousal-induced activity changes in populations of layer2/3 pyramidal neurons in the primary motor cortex of freely-behaving mice, providing opportunities to define the neural basis of behavior.

Authors

  • Honghua Guan
    Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
  • Dawei Li
  • Hyeon-Cheol Park
    Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
  • Ang Li
    Section of Hematology-Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Electronic address: ang.li2@bcm.edu.
  • Yuanlei Yue
    Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA.
  • Yung-Tian A Gau
    Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
  • Ming-Jun Li
    Science and Technology Division, Corning Incorporated, Corning, NY, 14831, USA.
  • Dwight E Bergles
    Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
  • Hui Lu
    Key Laboratory of the plateau of environmental damage control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China.
  • Xingde Li
    Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. xingde@jhu.edu.