Bayesian deep learning outperforms clinical trial estimators of intracerebral and intraventricular hemorrhage volume.
Journal:
Journal of neuroimaging : official journal of the American Society of Neuroimaging
PMID:
35434846
Abstract
BACKGROUND AND PURPOSE: Intracerebral hemorrhage (ICH) and intraventricular hemorrhage (IVH) clinical trials rely on manual linear and semi-quantitative (LSQ) estimators like the ABC/2, modified Graeb and IVH scores for timely volumetric estimation from CT. Deep learning (DL) volumetrics of ICH have recently approached the accuracy of gold-standard planimetry. However, DL and LSQ strategies have been limited by unquantified uncertainty, in particular when ICH and IVH estimates intersect. Bayesian deep learning methods can be used to approximate uncertainty, presenting an opportunity to improve quality assurance in clinical trials.