Deep learning of chest X-rays can predict mechanical ventilation outcome in ICU-admitted COVID-19 patients.

Journal: Scientific reports
PMID:

Abstract

The COVID-19 pandemic repeatedly overwhelms healthcare systems capacity and forced the development and implementation of triage guidelines in ICU for scarce resources (e.g. mechanical ventilation). These guidelines were often based on known risk factors for COVID-19. It is proposed that image data, specifically bedside computed X-ray (CXR), provide additional predictive information on mortality following mechanical ventilation that can be incorporated in the guidelines. Deep transfer learning was used to extract convolutional features from a systematically collected, multi-institutional dataset of COVID-19 ICU patients. A model predicting outcome of mechanical ventilation (remission or mortality) was trained on the extracted features and compared to a model based on known, aggregated risk factors. The model reached a 0.702 area under the curve (95% CI 0.707-0.694) at predicting mechanical ventilation outcome from pre-intubation CXRs, higher than the risk factor model. Combining imaging data and risk factors increased model performance to 0.743 AUC (95% CI 0.746-0.732). Additionally, a post-hoc analysis showed an increase performance on high-quality than low-quality CXRs, suggesting that using only high-quality images would result in an even stronger model.

Authors

  • Daniel Gourdeau
    CERVO Brain Research Center, Québec, Québec, Canada. daniel.gourdeau.1@ulaval.ca.
  • Olivier Potvin
    Centre de recherche CERVO, 2601 de la Canardière, Québec, G1J 2G3, Canada.
  • Jason Henry Biem
    Department of Radiology and Nuclear Medicine, Université Laval, Québec, Québec, Canada.
  • Florence Cloutier
    Department of Family and Emergency Medicine, Université Laval, Québec, Québec, Canada.
  • Lyna Abrougui
    Centre de recherche intégrée pour un système apprenant en santé et services sociaux, Lévis, Québec, Canada.
  • Patrick Archambault
    Department of Family and Emergency Medicine, Université Laval; Québec, QC, Canada; Research Chair in Emergency Medicine Laval University-CHAU Hôtel-Dieu de Lévis Hospital; Lévis City, QC, Canada.
  • Carl Chartrand-Lefebvre
    Centre hospitalier de l'Université de Montréal, Montréal, Canada.
  • Louis Dieumegarde
    Centre de recherche CERVO, 2601 de la Canardière, Québec, G1J 2G3, Canada.
  • Christian Gagne
  • Louis Gagnon
    Department of Radiology and Nuclear Medicine, Université Laval, Québec, Québec, Canada.
  • Raphaelle Giguère
    Centre de recherche intégrée pour un système apprenant en santé et services sociaux, Lévis, Québec, Canada.
  • Alexandre Hains
    Electrical and Computer Engineering Department, Université Laval, Québec, Canada.
  • Huy Le
    Department of Bioengineering, University of California, San Diego, CA, United States of America.
  • Simon Lemieux
    Department of Radiology and Nuclear Medicine, Université Laval, Québec, Québec, Canada.
  • Marie-Hélène Lévesque
    Department of Radiology and Nuclear Medicine, Université Laval, Québec, Québec, Canada.
  • Simon Nepveu
    Centre hospitalier de l'Université de Montréal, Montréal, Canada.
  • Lorne Rosenbloom
    Jewish General Hospital, Montréal, Canada.
  • An Tang
    Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.
  • Issac Yang
    Jewish General Hospital, Montréal, Canada.
  • Nathalie Duchesne
    Department of Radiology and Nuclear Medicine, Université Laval, Québec, Québec, Canada.
  • Simon Duchesne