How Frequency Injection Locking Can Train Oscillatory Neural Networks to Compute in Phase.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

Brain-inspired computing employs devices and architectures that emulate biological functions for more adaptive and energy-efficient systems. Oscillatory neural networks (ONNs) are an alternative approach in emulating biological functions of the human brain and are suitable for solving large and complex associative problems. In this work, we investigate the dynamics of coupled oscillators to implement such ONNs. By harnessing the complex dynamics of coupled oscillatory systems, we forge a novel computation model-information is encoded in the phase of oscillations. Coupled interconnected oscillators can exhibit various behaviors due to the strength of the coupling. In this article, we present a novel method based on subharmonic injection locking (SHIL) for controlling the oscillatory states of coupled oscillators that allow them to lock in frequency with distinct phase differences. Circuit-level simulation results indicate SHIL effectiveness and its applicability to large-scale oscillatory networks for pattern recognition.

Authors

  • Aida Todri-Sanial
  • Stefania Carapezzi
  • Corentin Delacour
  • Madeleine Abernot
  • Thierry Gil
  • Elisabetta Corti
  • Siegfried F Karg
  • Juan Nunez
  • Manuel Jiménez
    Facultad de Educación, Universidad Internacional de la Rioja, 26006 Logroño, Spain.
  • Maria J Avedillo
  • Bernabe Linares-Barranco