Size-adaptive mediastinal multilesion detection in chest CT images via deep learning and a benchmark dataset.
Journal:
Medical physics
PMID:
35689486
Abstract
PURPOSE: Many deep learning methods have been developed for pulmonary lesion detection in chest computed tomography (CT) images. However, these methods generally target one particular lesion type, that is, pulmonary nodules. In this work, we intend to develop and evaluate a novel deep learning method for a more challenging task, detecting various benign and malignant mediastinal lesions with wide variations in sizes, shapes, intensities, and locations in chest CT images.