Quantitative and qualitative assessments of deep learning image reconstruction in low-keV virtual monoenergetic dual-energy CT.

Journal: European radiology
Published Date:

Abstract

OBJECTIVES: To evaluate a novel deep learning image reconstruction (DLIR) technique for dual-energy CT (DECT) derived virtual monoenergetic (VM) images compared to adaptive statistical iterative reconstruction (ASIR-V) in low kiloelectron volt (keV) images.

Authors

  • Jack Junchi Xu
    Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark. jack.junchi.xu@regionh.dk.
  • Lars Lönn
    Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
  • Esben Budtz-Jørgensen
    Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
  • Kristoffer L Hansen
    Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
  • Peter S Ulriksen
    Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.