Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously.

Journal: Nature communications
PMID:

Abstract

Modular robot that can reconfigure architectures and functions has advantages in unpredicted environment and task. However, the construction of modular robot at small-scale remains a challenge since the lack of reliable docking and detaching strategies. Here we report the concept of milli-scale cellular robot (mCEBOT) achieved by the heterogeneous assembly of two types of units (short and long units). Under the magnetic field, the proposed mCEBOT units can not only selectively assemble (e.g., end-by-end and side-by-side) into diverse morphologies corresponding to the unstructured environments, but also configure multi-modes motion behaviors (e.g., slipping, rolling, walking and climbing) based on the on-site task requirements. We demonstrate its adaptive mobility from narrow space to high barrier to wetting surface, and its potential applications in hanging target taking and environment exploration. The concept of mCEBOT offers new opportunities for robot design, and will broaden the field of modular robot in both miniaturization and functionalization.

Authors

  • Xiong Yang
    School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China. Electronic address: xiong.yang@tju.edu.cn.
  • Rong Tan
    Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999017, China.
  • Haojian Lu
    State Key Laboratory of Industrial Control and Technology, Zhejiang University, 310027, Hangzhou, China. luhaojian@zju.edu.cn.
  • Toshio Fukuda
  • Yajing Shen
    Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.