Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity.
Journal:
Academic radiology
PMID:
35810067
Abstract
RATIONALE AND OBJECTIVES: To investigate the impact of a prototypical deep learning-based super-resolution reconstruction algorithm tailored to partial Fourier acquisitions on acquisition time and image quality for abdominal T1-weighted volume-interpolated breath-hold examination (VIBE) at 3 Tesla. The standard T1-weighted images were used as the reference standard (VIBE).