Applications of artificial intelligence multiomics in precision oncology.
Journal:
Journal of cancer research and clinical oncology
Published Date:
Jul 7, 2022
Abstract
Cancer is the second leading worldwide disease that depends on oncogenic mutations and non-mutated genes for survival. Recent advancements in next-generation sequencing (NGS) have transformed the health care sector with big data and machine learning (ML) approaches. NGS data are able to detect the abnormalities and mutations in the oncogenes. These multi-omics analyses are used for risk prediction, early diagnosis, accurate prognosis, and identification of biomarkers in cancer patients. The availability of these cancer data and their analysis may provide insights into the biology of the disease, which can be used for the personalized treatment of cancer patients. Bioinformatics tools are delivering this promise by managing, integrating, and analyzing these complex datasets. The clinical outcomes of cancer patients are improved by the use of various innovative methods implicated particularly for diagnosis and therapeutics. ML-based artificial intelligence (AI) applications are solving these issues to a great extent. AI techniques are used to update the patients on a personalized basis about their treatment procedures, progress, recovery, therapies used, dietary changes in lifestyles patterns along with the survival summary of previously recovered cancer patients. In this way, the patients are becoming more aware of their diseases and the entire clinical treatment procedures. Though the technology has its own advantages and disadvantages, we hope that the day is not so far when AI techniques will provide personalized treatment to cancer patients tailored to their needs in much quicker ways.