Automatic deep learning-based consolidation/collapse classification in lung ultrasound images for COVID-19 induced pneumonia.

Journal: Scientific reports
Published Date:

Abstract

Our automated deep learning-based approach identifies consolidation/collapse in LUS images to aid in the identification of late stages of COVID-19 induced pneumonia, where consolidation/collapse is one of the possible associated pathologies. A common challenge in training such models is that annotating each frame of an ultrasound video requires high labelling effort. This effort in practice becomes prohibitive for large ultrasound datasets. To understand the impact of various degrees of labelling precision, we compare labelling strategies to train fully supervised models (frame-based method, higher labelling effort) and inaccurately supervised models (video-based methods, lower labelling effort), both of which yield binary predictions for LUS videos on a frame-by-frame level. We moreover introduce a novel sampled quaternary method which randomly samples only 10% of the LUS video frames and subsequently assigns (ordinal) categorical labels to all frames in the video based on the fraction of positively annotated samples. This method outperformed the inaccurately supervised video-based method and more surprisingly, the supervised frame-based approach with respect to metrics such as precision-recall area under curve (PR-AUC) and F1 score, despite being a form of inaccurate learning. We argue that our video-based method is more robust with respect to label noise and mitigates overfitting in a manner similar to label smoothing. The algorithm was trained using a ten-fold cross validation, which resulted in a PR-AUC score of 73% and an accuracy of 89%. While the efficacy of our classifier using the sampled quaternary method significantly lowers the labelling effort, it must be verified on a larger consolidation/collapse dataset, our proposed classifier using the sampled quaternary video-based method is clinically comparable with trained experts' performance.

Authors

  • Nabeel Durrani
    Faculty of Engineering, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD, 4000, Australia.
  • Damjan Vukovic
  • Jeroen van der Burgt
    School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane 4000, QLD, Australia.
  • Maria Antico
    School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia. Electronic address: maria.antico@hdr.qut.edu.au.
  • Ruud J G van Sloun
    Laboratory of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands. Electronic address: r.j.g.v.sloun@tue.nl.
  • David Canty
    Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
  • Marian Steffens
    School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD, 4000, Australia.
  • Andrew Wang
    Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
  • Alistair Royse
    Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
  • Colin Royse
    Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia; Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA.
  • Kavi Haji
    Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
  • Jason Dowling
    Australian e-Health Research Centre, CSIRO, Digital Productivity Flagship.
  • Girija Chetty
    School of IT & Systems, Faculty of Science and Technology, University of Canberra, 11 Kirinari Street, Bruce 2617, ACT, Australia.
  • Davide Fontanarosa
    Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia. Electronic address: d3.fontanarosa@qut.edu.au.