Combining mass spectrometry and machine learning to discover bioactive peptides.

Journal: Nature communications
Published Date:

Abstract

Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development.

Authors

  • Christian T Madsen
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark. ctom@novonordisk.com.
  • Jan C Refsgaard
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Felix G Teufel
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Sonny K Kjærulff
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Zhe Wang
    Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
  • Guangjun Meng
    Novo Nordisk Research Centre China, Beijing, China.
  • Carsten Jessen
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Petteri Heljo
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Qunfeng Jiang
    Novo Nordisk Research Centre China, Beijing, China.
  • Xin Zhao
    Florida International University.
  • Bo Wu
    Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing China.
  • Xueping Zhou
    Novo Nordisk Research Centre China, Beijing, China.
  • Yang Tang
    School of Science, Jiangsu University, Zhenjiang, China.
  • Jacob F Jeppesen
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Christian D Kelstrup
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Stephen T Buckley
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Søren Tullin
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Jan Nygaard-Jensen
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Xiaoli Chen
    Novo Nordisk Research Centre China, Beijing, China.
  • Fang Zhang
  • Jesper V Olsen
    Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
  • Dan Han
    College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100124, China.
  • Mads Grønborg
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.
  • Ulrik de Lichtenberg
    Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark.