Fisheye transformation enhances deep-learning-based single-cell phenotyping by including cellular microenvironment.

Journal: Cell reports methods
PMID:

Abstract

Incorporating information about the surroundings can have a significant impact on successfully determining the class of an object. This is of particular interest when determining the phenotypes of cells, for example, in the context of high-throughput screens. We hypothesized that an ideal approach would consider the fully featured view of the cell of interest, include its neighboring microenvironment, and give lesser weight to cells that are far from the cell of interest. To satisfy these criteria, we present an approach with a transformation similar to those characteristic of fisheye cameras. Using this transformation with proper settings, we could significantly increase the accuracy of single-cell phenotyping, both in the case of cell culture and tissue-based microscopy images, and we present improved results on a dataset containing images of wild animals.

Authors

  • Timea Toth
    Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
  • Dávid Bauer
    Department of Cardiology, University Hospital Královské Vinohrady, Prague, Czech Republic.
  • Farkas Sukosd
    University of Szeged, Department of Pathology, Szeged, Hungary.
  • Péter Horváth
    Department of Pulmonology, Semmelweis University, Budapest, Hungary.