Artificial intelligence in lung cancer: current applications and perspectives.

Journal: Japanese journal of radiology
Published Date:

Abstract

Artificial intelligence (AI) has been a very active research topic over the last years and thoracic imaging has particularly benefited from the development of AI and in particular deep learning. We have now entered a phase of adopting AI into clinical practice. The objective of this article was to review the current applications and perspectives of AI in thoracic oncology. For pulmonary nodule detection, computer-aided detection (CADe) tools have been commercially available since the early 2000s. The more recent rise of deep learning and the availability of large annotated lung nodule datasets have allowed the development of new CADe tools with fewer false-positive results per examination. Classical machine learning and deep-learning methods were also used for pulmonary nodule segmentation allowing nodule volumetry and pulmonary nodule characterization. For pulmonary nodule characterization, radiomics and deep-learning approaches were used. Data from the National Lung Cancer Screening Trial (NLST) allowed the development of several computer-aided diagnostic (CADx) tools for diagnosing lung cancer on chest computed tomography. Finally, AI has been used as a means to perform virtual biopsies and to predict response to treatment or survival. Thus, many detection, characterization and stratification tools have been proposed, some of which are commercially available.

Authors

  • Guillaume Chassagnon
    Department of Radiology, Hopital Cochin, APHP, 75014 Paris, France; Université Paris Cité, 75006 Paris, France.
  • Constance de Margerie-Mellon
    PARCC UMRS 970, INSERM, Paris, France; Université Paris Cité, AP-HP, Hopital Saint Louis, Paris, France.
  • Maria Vakalopoulou
    Ecole CentraleSupelec, 91190, Gif-sur-Yvette, France.
  • Rafael Marini
    From the Department of Radiology (G.C., T.N.H.T., M.P.R.), Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune Diseases of Île de France (A.R., B.D., L.M.), and Department of Physiology (A.T.D.X.), Hôpital Cochin, AP-HP Centre, Université de Paris, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, École CentraleSupélec, Png-sur-Yvette, France (G.C., M.V., M.S., N.P.); and TheraPanacea, Paris, France (R.M., N.P.).
  • Trieu-Nghi Hoang-Thi
    Radiology Department, Hopital Cochin - AP-HP. Centre Université de Paris, 27 Rue du Faubourg Saint-Jacques, Paris 75014, France.
  • Marie-Pierre Revel
    Department of Radiology (G.C., S.D., M.P.R.) and Respiratory Medicine and National Cystic Reference Center (P.R.B.), Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, Grande Voie des Vignes, Chatenay Malabry, France (G.C., E.I.Z., N.P.); U1016 Inserm, Institut Cochin, Paris, France (G.C., P.R.B., C.M., M.P.R.); Radiology Department (S.B.) and Pulmonary Department (R.C.), Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université de Montpellier, Montpellier, France; ERN-Lung CF Network, France (P.R.B., C.M.); and TheraPanacea, Paris-Biotech-Santé, Paris, France (N.P.).
  • Philippe Soyer
    Department of Radiology, Hôpital Cochin-APHP, 27 Rue du Faubourg Saint-Jacques, Paris 75014, France.