Adaptive Deformation Control of a Flexible Variable-Length Rotary Crane Arm With Asymmetric Input-Output Constraints.

Journal: IEEE transactions on cybernetics
Published Date:

Abstract

This article constructs two adaptive control laws to achieve deformation reduction and attitude tracking for a rotary variable-length crane arm with system parameter uncertainties and asymmetric input-output constraints. Two auxiliary systems are given to deal with the input constraints, an asymmetric-logarithm-barrier Lyapunov function is established for achieving the asymmetric output constrains, and five adaptive laws are constructed to handle system parameter uncertainties. Besides, the control design is based on a partial differential equation model, and the S-curve acceleration and deceleration method is used for regulating the arm extension speed. Both the system stability and uniform ultimate boundedness of the controlled crane arm are analyzed. Simulation results validate the effectiveness of our established control laws.

Authors

  • Yanfang Mei
  • Yu Liu
    Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
  • Huan Wang
    Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, P. R. China.
  • He Cai