Brain-Controlled 2D Navigation Robot Based on a Spatial Gradient Controller and Predictive Environmental Coordinator.
Journal:
IEEE journal of biomedical and health informatics
PMID:
36343004
Abstract
OBJECTIVE: Brain-computer interfaces (BCIs) have been used in two-dimensional (2D) navigation robotic devices, such as brain-controlled wheelchairs and brain-controlled vehicles. However, contemporary BCI systems are driven by binary selective control. On the one hand, only directional information can be transferred from humans to machines, such as "turn left" or "turn right", which means that the quantified value, such as the radius of gyration, cannot be controlled. In this study, we proposed a spatial gradient BCI controller and corresponding environment coordinator, by which the quantified value of brain commands can be transferred in the form of a 2D vector, improving the flexibility, stability and efficiency of BCIs.