Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI.

Journal: NeuroImage. Clinical
Published Date:

Abstract

The application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of extracting image features not detectable through conventional methods. Additionally, the study of CNN-derived attention maps, which indicate the most relevant anatomical features for CNN-based decisions, has the potential to uncover key disease mechanisms leading to disability accumulation. From a cohort of patients prospectively followed up after a first demyelinating attack, we selected those with T1-weighted and T2-FLAIR brain MRI sequences available for image analysis and a clinical assessment performed within the following six months (N = 319). Patients were divided into two groups according to expanded disability status scale (EDSS) score: ≥3.0 and < 3.0. A 3D-CNN model predicted the class using whole-brain MRI scans as input. A comparison with a logistic regression (LR) model using volumetric measurements as explanatory variables and a validation of the CNN model on an independent dataset with similar characteristics (N = 440) were also performed. The layer-wise relevance propagation method was used to obtain individual attention maps. The CNN model achieved a mean accuracy of 79% and proved to be superior to the equivalent LR-model (77%). Additionally, the model was successfully validated in the independent external cohort without any re-training (accuracy = 71%). Attention-map analyses revealed the predominant role of frontotemporal cortex and cerebellum for CNN decisions, suggesting that the mechanisms leading to disability accrual exceed the mere presence of brain lesions or atrophy and probably involve how damage is distributed in the central nervous system.

Authors

  • Llucia Coll
    Research Institute of Computer Vision and Robotics, University of Girona, Girona, Spain.
  • Deborah Pareto
    Magnetic Resonance Unit, Dept of Radiology, Vall d'Hebron University Hospital, Spain.
  • Pere Carbonell-Mirabent
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Álvaro Cobo-Calvo
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Georgina Arrambide
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Ángela Vidal-Jordana
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Manuel Comabella
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Joaquín Castilló
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Breogán Rodríguez-Acevedo
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Ana Zabalza
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Ingrid Galán
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Luciana Midaglia
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Carlos Nos
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Annalaura Salerno
    Section of Neuroradiology, Department of Radiology (IDI), Vall d'Hebron University Hospital, Spain, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Cristina Auger
    Section of Neuroradiology, Department of Radiology (IDI), Vall d'Hebron University Hospital, Spain, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Manel Alberich
    Section of Neuroradiology, Department of Radiology (IDI), Vall d'Hebron University Hospital, Spain, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Jordi Río
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Jaume Sastre-Garriga
    Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
  • Arnau Oliver
    Research institute of Computer Vision and Robotics, University of Girona, Spain.
  • Xavier Montalbán
    Hospital Universitari Vall d'Hebron, Barcelona, Spain.
  • Àlex Rovira
    Magnetic Resonance Unit, Dept of Radiology, Vall d'Hebron University Hospital, Spain.
  • Mar Tintoré
    Hospital Vall d'Hebron, Barcelona, Spain.
  • Xavier Lladó
    Research institute of Computer Vision and Robotics, University of Girona, Spain.
  • Carmen Tur
    Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Barcelona, Spain; Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.