Accurately modeling biased random walks on weighted networks using node2vec.
Journal:
Bioinformatics (Oxford, England)
PMID:
36688699
Abstract
MOTIVATION: Accurately representing biological networks in a low-dimensional space, also known as network embedding, is a critical step in network-based machine learning and is carried out widely using node2vec, an unsupervised method based on biased random walks. However, while many networks, including functional gene interaction networks, are dense, weighted graphs, node2vec is fundamentally limited in its ability to use edge weights during the biased random walk generation process, thus under-using all the information in the network.