Metabolic engineering for sustainability and health.

Journal: Trends in biotechnology
PMID:

Abstract

Bio-based production of chemicals and materials has attracted much attention due to the urgent need to establish sustainability and enhance human health. Metabolic engineering (ME) allows purposeful modification of cellular metabolic, regulatory, and signaling networks to achieve enhanced production of desired chemicals and degradation of environmentally harmful chemicals. ME has significantly progressed over the past 30 years through further integration of the strategies of synthetic biology, systems biology, evolutionary engineering, and data science aided by artificial intelligence. Here we review the field of ME from its emergence to the current state-of-the-art, highlighting its contribution to sustainable production of chemicals, health, and the environment through representative examples. Future challenges of ME and perspectives are also discussed.

Authors

  • Gi Bae Kim
    Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • So Young Choi
    Department of Radiology, Eulji University Medical Center, College of Medicine, Seoul, South Korea.
  • In Jin Cho
    Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Da-Hee Ahn
    Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • Sang Yup Lee
    Department of Chemical and Biomolecular Engineering (BK21 Plus Program), KAIST, Daejeon 34141, Republic of Korea.