Single-cell gene regulatory network prediction by explainable AI.

Journal: Nucleic acids research
PMID:

Abstract

The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.

Authors

  • Philipp Keyl
    Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Philip Bischoff
    Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Gabriel Dernbach
    Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Michael Bockmayr
    Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
  • Rebecca Fritz
    Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • David Horst
    Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Nils Blüthgen
    Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany.
  • Grégoire Montavon
    Machine Learning Group, Technische Universität Berlin, Berlin, Germany.
  • Klaus-Robert Müller
    Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Deutschland.
  • Frederick Klauschen
    Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland. f.klauschen@lmu.de.