Anti-Biofilm: Machine Learning Assisted Prediction of IC Activity of Chemicals Against Biofilms of Microbes Causing Antimicrobial Resistance and Implications in Drug Repurposing.

Journal: Journal of molecular biology
PMID:

Abstract

Biofilms are one of the leading causes of antibiotic resistance. It acts as a physical barrier against the human immune system and drugs. The use of anti-biofilm agents helps in tackling the menace of antibiotic resistance. The identification of efficient anti-biofilm chemicals remains a challenge. Therefore, in this study, we developed 'anti-Biofilm', a machine learning technique (MLT) based predictive algorithm for identifying and analyzing the biofilm inhibition of small molecules. The algorithm is developed using experimentally validated anti-biofilm compounds with half maximal inhibitory concentration (IC) values extracted from aBiofilm resource. Out of the five MLTs, the Support Vector Machine performed best with Pearson's correlation coefficient of 0.75 on the training/testing data set. The robustness of the developed model was further checked using an independent validation dataset. While analyzing the chemical diversity of the anti-biofilm compounds, we observed that they occupy diverse chemical spaces with parent molecules like furanone, urea, phenolic acids, quinolines, and many more. Use of diverse chemicals as input further signifies the robustness of our predictive models. The three best-performing machine learning models were implemented as a user-friendly 'anti-Biofilm' web server (https://bioinfo.imtech.res.in/manojk/antibiofilm/) with different other modules which make 'anti-Biofilm' a comprehensive platform. Therefore, we hope that our initiative will be helpful for the scientific community engaged in identifying effective anti-biofilm agents to target the problem of antimicrobial resistance.

Authors

  • Akanksha Rajput
    Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India.
  • Kailash T Bhamare
    Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
  • Anamika Thakur
    Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India.
  • Manoj Kumar
    Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India mmlpup73@gmail.com +91 17522 83075 +91 95015 42696.