Unsupervised abnormality detection in neonatal MRI brain scans using deep learning.

Journal: Scientific reports
Published Date:

Abstract

Analysis of 3D medical imaging data has been a large topic of focus in the area of Machine Learning/Artificial Intelligence, though little work has been done in algorithmic (particularly unsupervised) analysis of neonatal brain MRI's. A myriad of conditions can manifest at an early age, including neonatal encephalopathy (NE), which can result in lifelong physical consequences. As such, there is a dire need for better biomarkers of NE and other conditions. The objective of the study is to improve identification of anomalies and prognostication of neonatal MRI brain scans. We introduce a framework designed to support the analysis and assessment of neonatal MRI brain scans, the results of which can be used as an aid to neuroradiologists. We explored the efficacy of the framework through iterations of several deep convolutional Autoencoder (AE) unsupervised modeling architectures designed to learn normalcy of the neonatal brain structure. We tested this framework on the developing human connectome project (dHCP) dataset with 97 patients that were previously categorized by severity. Our framework demonstrated the model's ability to identify and distinguish subtle morphological signatures present in brain structures. Normal and abnormal neonatal brain scans can be distinguished with reasonable accuracy, correctly categorizing them in up to 83% of cases. Most critically, new brain anomalies originally missed during the radiological reading were identified and corroborated by a neuroradiologist. This framework and our modeling approach demonstrate an ability to improve prognostication of neonatal brain conditions and are able to localize new anomalies.

Authors

  • Jad Dino Raad
    Industrial and Systems Engineering Department, Wayne State University, Detroit, MI, 48201, USA.
  • Ratna Babu Chinnam
    Industrial and Systems Engineering Department, Wayne State University, Detroit, MI, 48201, USA.
  • Suzan Arslanturk
    Department of Computer Science, Wayne State University, Detroit, 48201, USA. suzan.arslanturk@wayne.edu.
  • Sidhartha Tan
    Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan, USA.
  • Jeong-Won Jeong
  • Swati Mody
    Division of Pediatric Radiology, University of Michigan, Ann Arbor, MI, 48109, USA.