Comparative evaluation of uncertainty estimation and decomposition methods on liver segmentation.
Journal:
International journal of computer assisted radiology and surgery
Published Date:
Aug 16, 2023
Abstract
PURPOSE: Deep neural networks need to be able to indicate error likelihood via reliable estimates of their predictive uncertainty when used in high-risk scenarios, such as medical decision support. This work contributes a systematic overview of state-of-the-art approaches for decomposing predictive uncertainty into aleatoric and epistemic components, and a comprehensive comparison for Bayesian neural networks (BNNs) between mutual information decomposition and the explicit modelling of both uncertainty types via an additional loss-attenuating neuron.