An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis.

Journal: Scientific reports
Published Date:

Abstract

Raman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses can more effectively discriminate malignant features, thus reducing unnecessary surgeries. However, one major hurdle to using Raman spectroscopy as a diagnostic tool is the identification of significant patterns and peaks. In this study, we propose a Machine Learning procedure to discriminate healthy/benign versus malignant nodules that produces interpretable results. We collect Raman spectra obtained from histological samples, select a set of peaks with a data-driven and label independent approach and train the algorithms with the relative prominence of the peaks in the selected set. The performance of the considered models, quantified by area under the Receiver Operating Characteristic curve, exceeds 0.9. To enhance the interpretability of the results, we employ eXplainable Artificial Intelligence and compute the contribution of each feature to the prediction of each sample.

Authors

  • Loredana Bellantuono
    Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy.
  • Raffaele Tommasi
    Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Università degli Studi di Bari Aldo Moro, 70124, Bari, Italy.
  • Ester Pantaleo
    Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125, Bari, Italy.
  • Martina Verri
    Unit of Endocrine Organs and Neuromuscolar Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy.
  • Nicola Amoroso
    Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy. Electronic address: nicola.amoroso@ba.infn.it.
  • Pierfilippo Crucitti
    Unit of Thoracic Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy.
  • Michael Di Gioacchino
    Dipartimento di Scienze, Università degli Studi Roma Tre, 00146, Roma, Italy. michael.digioacchino@uniroma3.it.
  • Filippo Longo
    Unit of Thoracic Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy.
  • Alfonso Monaco
    Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy. Electronic address: Alfonso.Monaco@ba.infn.it.
  • Anda Mihaela Naciu
    Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy.
  • Andrea Palermo
    Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy.
  • Chiara Taffon
    Unit of Endocrine Organs and Neuromuscolar Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy.
  • Sabina Tangaro
    Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy. Electronic address: Sonia.Tangaro@ba.infn.it.
  • Anna Crescenzi
    Unit of Endocrine Organs and Neuromuscolar Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy.
  • Armida Sodo
    Dipartimento di Scienze, Università degli Studi Roma Tre, 00146, Roma, Italy.
  • Roberto Bellotti
    Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy. Electronic address: roberto.bellotti@uniba.it.