Assessing the Potential of a Deep Learning Tool to Improve Fracture Detection by Radiologists and Emergency Physicians on Extremity Radiographs.

Journal: Academic radiology
Published Date:

Abstract

RATIONALE AND OBJECTIVES: To evaluate the standalone performance of a deep learning (DL) based fracture detection tool on extremity radiographs and assess the performance of radiologists and emergency physicians in identifying fractures of the extremities with and without the DL aid.

Authors

  • Tianyuan Fu
    Department of Radiology, University Hospitals Cleveland, Cleveland, OH, USA.
  • Vidya Viswanathan
    Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
  • Alexandre Attia
    Azmed, 10 Rue d'Uzès, 75002, Paris, France (A.A., E.Z.A., J.V.).
  • Elie Zerbib-Attal
    Azmed, 10 Rue d'Uzès, 75002, Paris, France (A.A., E.Z.A., J.V.).
  • Vijaya Kosaraju
    University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA (T.F., V.V., V.K., R.B., L.K.B., N.F.).
  • Richard Barger
    University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA (T.F., V.V., V.K., R.B., L.K.B., N.F.).
  • Julien Vidal
    Azmed, 10 Rue d'Uzès, 75002, Paris, France (A.A., E.Z.A., J.V.).
  • Leonardo K Bittencourt
    University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA (T.F., V.V., V.K., R.B., L.K.B., N.F.).
  • Navid Faraji
    University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA (T.F., V.V., V.K., R.B., L.K.B., N.F.).