Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
Journal:
Medical physics
Published Date:
Nov 15, 2023
Abstract
BACKGROUND: Low-dose positron emission tomography (LD-PET) imaging is commonly employed in preclinical research to minimize radiation exposure to animal subjects. However, LD-PET images often exhibit poor quality and high noise levels due to the low signal-to-noise ratio. Deep learning (DL) techniques such as generative adversarial networks (GANs) and convolutional neural network (CNN) have the capability to enhance the quality of images derived from noisy or low-quality PET data, which encodes critical information about radioactivity distribution in the body.