Deep-learning-based segmentation using individual patient data on prostate cancer radiation therapy.
Journal:
PloS one
PMID:
39083552
Abstract
PURPOSE: Organ-at-risk segmentation is essential in adaptive radiotherapy (ART). Learning-based automatic segmentation can reduce committed labor and accelerate the ART process. In this study, an auto-segmentation model was developed by employing individual patient datasets and a deep-learning-based augmentation method for tailoring radiation therapy according to the changes in the target and organ of interest in patients with prostate cancer.