Artificial Intelligence-Driven Prediction Revealed CFTR Associated with Therapy Outcome of Breast Cancer: A Feasibility Study.
Journal:
Oncology
Published Date:
Jul 18, 2024
Abstract
INTRODUCTION: In silico tools capable of predicting the functional consequences of genomic differences between individuals, many of which are AI-driven, have been the most effective over the past two decades for non-synonymous single nucleotide variants (nsSNVs). When appropriately selected for the purpose of the study, a high predictive performance can be expected. In this feasibility study, we investigate the distribution of nsSNVs with an allele frequency below 5%. To classify the putative functional consequence, a tier-based filtration led by AI-driven predictors and scoring system was implemented to the overall decision-making process, resulting in a list of prioritised genes.