Training immunophenotyping deep learning models with the same-section ground truth cell label derivation method improves virtual staining accuracy.
Journal:
Frontiers in immunology
PMID:
39007128
Abstract
INTRODUCTION: Deep learning (DL) models predicting biomarker expression in images of hematoxylin and eosin (H&E)-stained tissues can improve access to multi-marker immunophenotyping, crucial for therapeutic monitoring, biomarker discovery, and personalized treatment development. Conventionally, these models are trained on ground truth cell labels derived from IHC-stained tissue sections adjacent to H&E-stained ones, which might be less accurate than labels from the same section. Although many such DL models have been developed, the impact of ground truth cell label derivation methods on their performance has not been studied.