Accuracy of generative deep learning model for macular anatomy prediction from optical coherence tomography images in macular hole surgery.

Journal: Scientific reports
PMID:

Abstract

This study aims to propose a generative deep learning model (GDLM) based on a variational autoencoder that predicts macular optical coherence tomography (OCT) images following full-thickness macular hole (FTMH) surgery and evaluate its clinical accuracy. Preoperative and 6-month postoperative swept-source OCT data were collected from 150 patients with successfully closed FTMH using 6 × 6 mm macular volume scan datasets. Randomly selected and augmented 120,000 training and 5000 validation pairs of OCT images were used to train the GDLM. We assessed the accuracy and F1 score of concordance for neurosensory retinal areas, performed Bland-Altman analysis of foveolar height (FH) and mean foveal thickness (MFT), and predicted postoperative external limiting membrane (ELM) and ellipsoid zone (EZ) restoration accuracy between artificial intelligence (AI)-OCT and ground truth (GT)-OCT images. Accuracy and F1 scores were 94.7% and 0.891, respectively. Average FH (228.2 vs. 233.4 μm, P = 0.587) and MFT (271.4 vs. 273.3 μm, P = 0.819) were similar between AI- and GT-OCT images, within 30.0% differences of 95% limits of agreement. ELM and EZ recovery prediction accuracy was 88.0% and 92.0%, respectively. The proposed GDLM accurately predicted macular OCT images following FTMH surgery, aiding patient and surgeon understanding of postoperative macular features.

Authors

  • Han Jo Kwon
    Department of Ophthalmology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Gudeok-ro 179, Seo-gu, Busan, 49241, South Korea.
  • Jun Heo
    Department of Ophthalmology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Gudeok-ro 179, Seo-gu, Busan, 49241, South Korea.
  • Su Hwan Park
    Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Geumo-ro 20, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, 50612, South Korea.
  • Sung Who Park
    Department of Ophthalmology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Gudeok-ro 179, Seo-gu, Busan, 49241, South Korea.
  • Iksoo Byon
    Department of Ophthalmology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Gudeok-ro 179, Seo-gu, Busan, 49241, South Korea. isbyon@pusan.ac.kr.