Artificial intelligence-based MRI radiomics and radiogenomics in glioma.

Journal: Cancer imaging : the official publication of the International Cancer Imaging Society
Published Date:

Abstract

The specific genetic subtypes that gliomas exhibit result in variable clinical courses and the need to involve multidisciplinary teams of neurologists, epileptologists, neurooncologists and neurosurgeons. Currently, the diagnosis of gliomas pivots mainly around the preliminary radiological findings and the subsequent definitive surgical diagnosis (via surgical sampling). Radiomics and radiogenomics present a potential to precisely diagnose and predict survival and treatment responses, via morphological, textural, and functional features derived from MRI data, as well as genomic data. In spite of their advantages, it is still lacking standardized processes of feature extraction and analysis methodology among different research groups, which have made external validations infeasible. Radiomics and radiogenomics can be used to better understand the genomic basis of gliomas, such as tumor spatial heterogeneity, treatment response, molecular classifications and tumor microenvironment immune infiltration. These novel techniques have also been used to predict histological features, grade or even overall survival in gliomas. In this review, workflows of radiomics and radiogenomics are elucidated, with recent research on machine learning or artificial intelligence in glioma.

Authors

  • Haiqing Fan
    Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China.
  • Yilin Luo
    Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
  • Fang Gu
    Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China.
  • Bin Tian
    Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
  • Yongqin Xiong
    Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
  • Guipeng Wu
    Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China.
  • Xin Nie
    School of Public Administration, Guangxi University, Nanning 530004, China.
  • Jing Yu
    Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
  • Juan Tong
    Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China.
  • Xin Liao
    Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.