Machine learning based analysis and detection of trend outliers for electromyographic neuromuscular monitoring.
Journal:
Journal of clinical monitoring and computing
PMID:
38573367
Abstract
PURPOSE: Neuromuscular monitoring is frequently plagued by artefacts, which along with the frequent unawareness of the principles of this subtype of monitoring by many clinicians, tends to lead to a cynical attitute by clinicians towards these monitors. As such, the present study aims to derive a feature set and evaluate its discriminative performance for the purpose of Train-of-Four Ratio (TOF-R) outlier analysis during continuous intraoperative EMG-based neuromuscular monitoring.