Enhancing voxel-based dosimetry accuracy with an unsupervised deep learning approach for hybrid medical image registration.
Journal:
Medical physics
PMID:
38772037
Abstract
BACKGROUND: Deformable registration is required to generate a time-integrated activity (TIA) map which is essential for voxel-based dosimetry. The conventional iterative registration algorithm using anatomical images (e.g., computed tomography (CT)) could result in registration errors in functional images (e.g., single photon emission computed tomography (SPECT) or positron emission tomography (PET)). Various deep learning-based registration tools have been proposed, but studies specifically focused on the registration of serial hybrid images were not found.