Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction.

Journal: La Radiologia medica
Published Date:

Abstract

PURPOSE: To assess the efficacy of machine learning and radiomics analysis by computed tomography (CT) in presurgical setting, to predict RAS mutational status in colorectal liver metastases.

Authors

  • Vincenza Granata
    Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
  • Roberta Fusco
    Radiology Division, 'Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale', via Mariano Semmola 53, 80131 Naples, Italy. Electronic address: r.fusco@istitutotumori.na.it.
  • Sergio Venanzio Setola
    Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, Italy.
  • Maria Chiara Brunese
    Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy.
  • Annabella Di Mauro
    Pathological Anatomy and Cytopathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy.
  • Antonio Avallone
    Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy.
  • Alessandro Ottaiano
    SSD-Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy.
  • Nicola Normanno
    IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Mendola, Italy.
  • Antonella Petrillo
    Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
  • Francesco Izzo
    Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy.