BarlowTwins-CXR: enhancing chest X-ray abnormality localization in heterogeneous data with cross-domain self-supervised learning.

Journal: BMC medical informatics and decision making
Published Date:

Abstract

BACKGROUND: Chest X-ray imaging based abnormality localization, essential in diagnosing various diseases, faces significant clinical challenges due to complex interpretations and the growing workload of radiologists. While recent advances in deep learning offer promising solutions, there is still a critical issue of domain inconsistency in cross-domain transfer learning, which hampers the efficiency and accuracy of diagnostic processes. This study aims to address the domain inconsistency problem and improve autonomic abnormality localization performance of heterogeneous chest X-ray image analysis, particularly in detecting abnormalities, by developing a self-supervised learning strategy called "BarlwoTwins-CXR".

Authors

  • Haoyue Sheng
    Département d'informatique et de recherche opérationnelle, Université de Montréal, 2920 chemin de la Tour, Montréal, H3T 1J4, QC, Canada. haoyue.sheng@umontreal.ca.
  • Linrui Ma
    Département d'informatique et de recherche opérationnelle, Université de Montréal, 2920 chemin de la Tour, Montréal, H3T 1J4, QC, Canada.
  • Jean-François Samson
    Direction des ressources informationnelles, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, 400 Blvd. De Maisonneuve Ouest, Montréal, H3A 1L4, QC, Canada.
  • Dianbo Liu
    Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge.