-A machine learning model to predict surgical site infection after surgery of lower extremity fractures.

Journal: International orthopaedics
PMID:

Abstract

PURPOSE: This study aimed to develop machine learning algorithms for identifying predictive factors associated with the risk of postoperative surgical site infection in patients with lower extremity fractures.

Authors

  • Jose M Gutierrez-Naranjo
    Department of Orthopaedics, UT Health San Antonio, San Antonio, TX, 78229-3900, USA. jmgutierrezn@gmail.com.
  • Alvaro Moreira
    Department of Pediatrics, University of Texas Health San Antonio, San Antonio, Texas, USA.
  • Eduardo Valero-Moreno
    Department of Orthopaedics, UT Health San Antonio, San Antonio, TX, 78229-3900, USA.
  • Travis S Bullock
    Department of Orthopaedics, UT Health San Antonio, San Antonio, TX, 78229-3900, USA.
  • Liliana A Ogden
    Department of Orthopaedics, UT Health San Antonio, San Antonio, TX, 78229-3900, USA.
  • Boris A Zelle
    Department of Orthopaedics, UT Health San Antonio, San Antonio, TX, 78229-3900, USA. zelle@uthscsa.edu.