An explainable machine learning model to solid adnexal masses diagnosis based on clinical data and qualitative ultrasound indicators.

Journal: Cancer medicine
PMID:

Abstract

BACKGROUND: Accurate characterization of newly diagnosed a solid adnexal lesion is a key step in defining the most appropriate therapeutic approach. Despite guidance from the International Ovarian Tumor Analyzes Panel, the evaluation of these lesions can be challenging. Recent studies have demonstrated how machine learning techniques can be applied to clinical data to solve this diagnostic problem. However, ML models can often consider as black-boxes due to the difficulty of understanding the decision-making process used by the algorithm to obtain a specific result.

Authors

  • Annarita Fanizzi
    Laboratorio di Biostatistica e Bioinformatica, Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
  • Francesca Arezzo
    Ginecologia Oncologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
  • Gennaro Cormio
    Ginecologia Oncologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
  • Maria Colomba Comes
    Laboratorio di Biostatistica e Bioinformatica, Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
  • Gerardo Cazzato
    Dipartimento dell'Emergenza e dei Trapianti di Organi, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
  • Luca Boldrini
    Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  • Samantha Bove
    Laboratorio di Biostatistica e Bioinformatica, Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
  • Michele Bollino
    Department of Obstetrics and Gynecology, Division of Gynecologic oncology, Skåne University Hospital and Lund University, Faculty of Medicine, Clinical Sciences, Lund, Sweden.
  • Anila Kardhashi
    Gynecologic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
  • Erica Silvestris
    Ginecologia Oncologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
  • Pietro Quarto
    Gynecologic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
  • Michele Mongelli
    Department of Biomedical Sciences and Human Oncology, Obstetrics and Gynecology Unit, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy.
  • Emanuele Naglieri
    Ginecologia Oncologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
  • Rahel Signorile
    Laboratorio Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy.
  • Vera Loizzi
    Ginecologia Oncologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
  • Raffaella Massafra
    Laboratorio di Biostatistica e Bioinformatica, Fisica Sanitaria, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.