Machine Learning: A Potential Therapeutic Tool to Facilitate Neonatal Therapeutic Decision Making.

Journal: Paediatric drugs
PMID:

Abstract

Bacterial infection is one of the major causes of neonatal morbidity and mortality worldwide. Finding rapid and reliable methods for early recognition and diagnosis of bacterial infections and early individualization of antibacterial drug administration are essential to eradicate these infections and prevent serious complications. However, this is often difficult to perform due to non-specific clinical presentations, low accuracy of current diagnostic methods, and limited knowledge of neonatal pharmacokinetics. Although neonatal medicine has been relatively late to embrace the benefits of machine learning (ML), there have been some initial applications of ML for the early prediction of neonatal sepsis and individualization of antibiotics. This article provides a brief introduction to ML and discusses the current state of the art in diagnosing and treating neonatal bacterial infections, gaps, potential uses of ML, and future directions to address the limitations of current studies. Neonatal bacterial infections involve a combination of physiologic development, disease expression, and treatment response outcomes. To address this complex relationship, future models could consider appropriate ML algorithms to capture time series features while integrating influences from the host, microbes, and drugs to optimize antimicrobial drug use in neonates. All models require prospective clinical trials to validate their clinical utility before clinical use.

Authors

  • Bo-Hao Tang
    Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  • Qiu-Yue Li
    Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  • Hui-Xin Liu
    Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  • Yi Zheng
    Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, 300211 Tianjin, China.
  • Yue-E Wu
    Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  • John van den Anker
    Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA.
  • Guo-Xiang Hao
    Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education),NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
  • Wei Zhao
    Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. China. lxy@jiangnan.edu.cn zhuye@jiangnan.edu.cn.