Identification of profiles associated with conversions between the Alzheimer's disease stages, using a machine learning approach.

Journal: Alzheimer's research & therapy
PMID:

Abstract

BACKGROUND: The identification of factors involved in the conversion across the different Alzheimer's disease (AD) stages is crucial to prevent or slow the disease progression. We aimed to assess the factors and their combination associated with the conversion across the AD stages, from mild cognitive impairment to dementia, at a mild, moderate or severe stage and to identify profiles associated with earliest/latest conversion across the AD stages.

Authors

  • Virginie Dauphinot
    Clinical and Research Memory Centre, Lyon Institute For Aging, Charpennes Hospital, Hospices Civils de Lyon, 27 rue Gabriel Péri, Villeurbanne, Lyon, 69100, France. virginie.dauphinot@chu-lyon.fr.
  • Marie Laurent
    Heva, Lyon, France.
  • Martin Prodel
    Heva, Lyon, France.
  • Alexandre Civet
    Roche France S.A.S, Boulogne Billancourt, France.
  • Alexandre Vainchtock
    Heva, Lyon, France.
  • Claire Moutet
    Clinical and Research Memory Centre, Lyon Institute For Aging, Charpennes Hospital, Hospices Civils de Lyon, 27 rue Gabriel Péri, Villeurbanne, Lyon, 69100, France.
  • Pierre Krolak-Salmon
    Institut du vieillissement, Hospices civils de Lyon, Inserm 1048, Université Lyon 1, Lyon, France.
  • Antoine Garnier-Crussard
    Clinical and Research Memory Centre, Lyon Institute For Aging, Charpennes Hospital, Hospices Civils de Lyon, 27 rue Gabriel Péri, Villeurbanne, Lyon, 69100, France.