Cryogenic electron microscopy maps are valuable for determining macromolecule structures. A proper quality assessment method is essential for cryo-EM map selection or revision. This article presents DeepQs, a novel approach to estimate local quality ...
Electron tomography is an imaging technique that allows for the elucidation of three-dimensional structural information of biological specimens in a very general context, including cellular in situ observations. The approach starts by collecting a se...
Over the last 15 years, structural biology has seen unprecedented development and improvement in two areas: electron cryo-microscopy (cryo-EM) and predictive modeling. Once relegated to low resolutions, single-particle cryo-EM is now capable of achie...
Efficient and high-accuracy filtering of cryo-electron microscopy (cryo-EM) micrographs is an emerging challenge with the growing speed of data collection and sizes of datasets. Convolutional neural networks (CNNs) are machine learning models that ha...
Interpreting electron cryo-microscopy (cryo-EM) maps with atomic models requires high levels of expertise and labour-intensive manual intervention in three-dimensional computer graphics programs. Here we present ModelAngelo, a machine-learning approa...
The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine ...
Designed protein cages and related materials provide unique opportunities for applications in biotechnology and medicine, but their creation remains challenging. Here, we apply computational approaches to design a suite of tetrahedrally symmetric, se...
RNA nanotechnology aims to use RNA as a programmable material to create self-assembling nanodevices for application in medicine and synthetic biology. The main challenge is to develop advanced RNA robotic devices that both sense, compute, and actuate...
To solve three-dimensional structures of biological macromolecules in situ, large numbers of particles often need to be picked from cryo-electron tomograms. However, adoption of automated particle-picking methods remains limited because of their tech...
MOTIVATION: Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structures of large protein complexes. Picking single protein particles from cryo-EM micrographs (images) is a crucial step in reconstructing protein structure...