The study of macromolecular structures has expanded our understanding of the amazing cell machinery and such knowledge has changed how the pharmaceutical industry develops new vaccines in recent years. Traditionally, X-ray crystallography has been th...
Recent progress in cryo-EM research has ignited a revolution in biological macromolecule structure determination. Resolution is an essential parameter for quality assessment of a cryo-EM density map, and it is known that resolution varies in differen...
Computational docking is an instrumental method of the structural biology toolbox. Specifically, integrative modeling software, such as LightDock, arise as complementary and synergetic methods to experimental structural biology techniques. Ubiquitous...
Many macromolecules in biological systems exist in the form of helical polymers. However, the inherent polymorphism and heterogeneity of samples complicate the reconstruction of helical polymers from cryo-EM images. Currently, available 2D classifica...
Characterizing structural and dynamic properties of proteins and large macromolecular assemblies is crucial to understand the molecular mechanisms underlying biological functions. In the field of structural biology, no single method comprehensively r...
Over the last 15 years, structural biology has seen unprecedented development and improvement in two areas: electron cryo-microscopy (cryo-EM) and predictive modeling. Once relegated to low resolutions, single-particle cryo-EM is now capable of achie...
IEEE transactions on bio-medical engineering
38224519
OBJECTIVE: Magnetic Resonance Spectroscopy (MRS) is an important technique for biomedical detection. However, it is challenging to accurately quantify metabolites with proton MRS due to serious overlaps of metabolite signals, imperfections because of...
The European physical journal. E, Soft matter
38831117
Small-Angle Scattering (SAS), encompassing both X-ray (SAXS) and Neutron (SANS) techniques, is a crucial tool for structural analysis at the nanoscale, particularly in the realm of biological macromolecules. This paper explores the intricacies of SAS...
While advances in single-particle cryo-EM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the 'preferred' orientation problem) remains a complication for most specimens. Existing ...
Cryo-electron microscopy (Cryo-EM) has revolutionized structural biology by enabling the determination of macromolecular structures that were challenging to study with conventional methods. Processing cryo-EM data involves several computational steps...