AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Protein Conformation

Showing 61 to 70 of 495 articles

Clear Filters

Teaching old docks new tricks with machine learning enhanced ensemble docking.

Scientific reports
We here introduce Ensemble Optimizer (EnOpt), a machine-learning tool to improve the accuracy and interpretability of ensemble virtual screening (VS). Ensemble VS is an established method for predicting protein/small-molecule (ligand) binding. Unlike...

PCP-GC-LM: single-sequence-based protein contact prediction using dual graph convolutional neural network and convolutional neural network.

BMC bioinformatics
BACKGROUND: Recently, the process of evolution information and the deep learning network has promoted the improvement of protein contact prediction methods. Nevertheless, still remain some bottleneck: (1) One of the bottlenecks is the prediction of o...

A Deep Learning Approach to Uncover Voltage-Gated Ion Channels' Intermediate States.

The journal of physical chemistry. B
Owing to recent advancements in cryo-electron microscopy, voltage-gated ion channels have gained a greater comprehension of their structural characteristics. However, a significant enigma remains unsolved for a large majority of these channels: their...

Conformations of KRAS4B Affected by Its Partner Binding and G12C Mutation: Insights from GaMD Trajectory-Image Transformation-Based Deep Learning.

Journal of chemical information and modeling
Binding of partners and mutations highly affects the conformational dynamics of KRAS4B, which is of significance for deeply understanding its function. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) and prin...

Predicting the Binding of Small Molecules to Proteins through Invariant Representation of the Molecular Structure.

Journal of chemical information and modeling
We present a computational scheme for predicting the ligands that bind to a pocket of a known structure. It is based on the generation of a general abstract representation of the molecules, which is invariant to rotations, translations, and permutati...

An end-to-end framework for the prediction of protein structure and fitness from single sequence.

Nature communications
Significant research progress has been made in the field of protein structure and fitness prediction. Particularly, single-sequence-based structure prediction methods like ESMFold and OmegaFold achieve a balance between inference speed and prediction...

Generative artificial intelligence performs rudimentary structural biology modeling.

Scientific reports
Natural language-based generative artificial intelligence (AI) has become increasingly prevalent in scientific research. Intriguingly, capabilities of generative pre-trained transformer (GPT) language models beyond the scope of natural language tasks...

Navigating the landscape of enzyme design: from molecular simulations to machine learning.

Chemical Society reviews
Global environmental issues and sustainable development call for new technologies for fine chemical synthesis and waste valorization. Biocatalysis has attracted great attention as the alternative to the traditional organic synthesis. However, it is c...

CREMP: Conformer-rotamer ensembles of macrocyclic peptides for machine learning.

Scientific data
Computational and machine learning approaches to model the conformational landscape of macrocyclic peptides have the potential to enable rational design and optimization. However, accurate, fast, and scalable methods for modeling macrocycle geometrie...

Predicting Conformational Ensembles of Intrinsically Disordered Proteins: From Molecular Dynamics to Machine Learning.

The journal of physical chemistry letters
Intrinsically disordered proteins and regions (IDP/IDRs) are ubiquitous across all domains of life. Characterized by a lack of a stable tertiary structure, IDP/IDRs populate a diverse set of transiently formed structural states that can promiscuously...