External validation of a 2-year all-cause mortality prediction tool developed using machine learning in patients with stage 4-5 chronic kidney disease.

Journal: Journal of nephrology
Published Date:

Abstract

BACKGROUND: Chronic kidney disease (CKD) is associated with increased mortality. Individual mortality prediction could be of interest to improve individual clinical outcomes. Using an independent regional dataset, the aim of the present study was to externally validate the recently published 2-year all-cause mortality prediction tool developed using machine learning.

Authors

  • Dung N T Tran
    Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100, Lyon, Villeurbanne, France.
  • Michel Ducher
    Pharmacie, Hospices Civils de Lyon, EMR3738 Ciblage thérapeutique en oncologie, Université Claude Bernard Lyon 1, Lyon, France.
  • Denis Fouque
    Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.
  • Jean-Pierre Fauvel
    Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Néphrologie, Université Claude Bernard Lyon 1, Lyon, France.